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Flat-top laser beam generated by coherent beam
combining of Gaussian lasers
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We present a flat-top laser beam generation scheme using coherent beam combining of hexagonally arranged
Gaussian lasers. To produce a beam with a flat-top profile, we optimize the amplitude and phase of each
unit laser using the least-square method. Simulation results show that with 13 unit lasers, a beam with
the flatness of less than 1% in the optimizing region can be achieved. The main lobe contains over 95%
of the total power. The scheme requires no external beam shaping element and has the potential to be
designed for high-power applications.
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Laser beams with a flat-top profile have special sig-
nificance in laser optics by their uniform illumination.
These lasers find applications in holography, material
processing, free-space optical communication, inertial
confinement fusion, and laser plasma interaction exper-
iments, etc.[1,2] In order to obtain the desired flat-top
beam, we employ external beam shaping elements in
most cases. Although conventional beam shaping ele-
ments work well in low-power applications, the perfor-
mance of the elements degrades when they operate at a
high power density[3]. The thermal stability of optical el-
ements becomes a main issue in high-power laser devices.

Coherent beam combining (CBC) scheme is one of the
solutions to obtain high-power laser output without much
performance degradation[4]. The scheme combines sev-
eral mutually coherent lasers to deliver the required high-
power output with a high coherence. In practice, the
generation of mutually coherent lasers can be realized
by actively locking the relative phase of each unit laser
like master oscillator power amplifier (MOPA) structures
with phase feedback, or by passively locking the phase
like some co-cavity structures, etc.[4−9] The combination
of the unit lasers can be realized in two ways: one of
the combining schemes is to arrange the unit lasers in a
spatial array with proper collimation, which is employed
in most CBC devices; the other combining scheme is to
build an output beam via a coupling element, which is
used in some co-cavity CBC devices[4−9]. The former re-
quires no coupling element so that it has a high damage
threshold, whereas the latter usually performs a better
beam quality[4,9,10].

In this letter, we discuss the possibility of producing
a flat-top beam by arranging several mutually coherent
Gaussian lasers in a hexagonal array[11−13]. We assume
ideal coherent laser sources and focus on the far field
of the combined beam. Instead of using unit lasers with
identical parameters as in conventional CBC schemes, we
use different unit lasers to produce the flat-top beam. An
optimizing method is employed to calculate the optimal

parameters of the unit lasers for the given arrangement.
To produce a beam with a flat-top profile in the far

field, we can take a review of the Fraunhofer diffraction
pattern of a uniformly illuminated circular aperture. The
nature of the Fraunhofer diffraction implies that if we
have a planar light source of the amplitude and phase
exactly as an Airy function, the intensity profile in the
far-field plane should be a flat-top one. In practice, a sin-
gle light source is fixed and limited, so an ideal flat-top
profile cannot be achieved. But in a coherently combined
light source, we have extra freedom to control the ampli-
tude and phase distributions. An idea is to simulate the
near-field distribution of an Airy function by using the
combination of unit lasers.

In our simulation, the unit lasers are arranged in a
hexagonal configuration[5,14], as shown in Fig. 1. This
brings the maximum filling factor for a two-dimensional
(2D) configuration. It should be noted that each unit
laser in Fig. 1 is actually of a Gaussian profile.

For an N -unit combined system in which all the unit
lasers are aligned in the x0−y0 plane, the near-field com-
plex amplitude U is the sum of N Gaussian functions:

U(x0, y0) =
N∑

j

Aj exp(iϕj)

exp

[
− (x0 − xj)2 + (y0 − yj)2

w2
j

]
, (1)

where Aj , ϕj , and wj are the amplitude, the relative
phase, and the waist radius of the jth laser, respectively,
xj and yj are the center coordinates of the jth laser.
Since an Airy function is always real, the relative phase
ϕj in Eq. (1) is essentially limited to 0 or π, where a
phase of π simulates negative value of the Airy function.
By integrating the phase term into the amplitude Aj ,
we will omit the phase term in later discussions, but one
should remember that the negative amplitudes actually
mean phase inversion.
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Fig. 1. A hexagonal array of unit lasers in CBC.

Since the arrangement of the unit lasers is hexago-
nally symmetric, we assume that the unit lasers of the
same distance from the origin have the same parameters.
Therefore, the unit lasers can be grouped by the distance
from the origin, and the unit lasers of the same distance
from the origin fall into the same group. The grouping
greatly reduces the number of variables in the simula-
tion. For a configuration with L groups, the near-field
complex amplitude U becomes

U(x0, y0) =
L∑

l

{
Al

Nl∑

j

exp
[
− (x0 − xj)2 + (y0 − yj)2

w2
l

] }

=
L∑

l

[Al · Ul(x0, y0)] , (2)

where Nl is the number of lasers in the lth group, Al and
Ul are the group amplitude and the combined complex
amplitude of the lth group, respectively. In our simula-
tion, Al is the parameter to be optimized, for that Ul is
fixed in a given configuration.

With the knowledge of the complex amplitude in the
near-field plane x0 − y0, we can calculate the far field
using the Fraunhofer diffraction formula. Our main con-
cern is the flatness, i.e., the shape of the beam profile in
the far field, so the diffraction formula can be essentially
simplified to a 2D Fourier transform. To obtain a com-
bined beam with the least flatness, we have to employ an
optimizing algorithm to calculate the optimal parameters
for all the unit lasers. The least-square method can be
used to minimize the error of the combined beam from
an ideal beam. The expression of the objective function
∆U for the optimization is

∆U =
∫∫

S

{F [U(x0, y0)]− UC}2dS

=
∫∫

S

[ L∑

l

Al · UFl(x, y)− UC

]2dS, (3)

where UFl is the Fourier transform of Ul, UC is a constant
representing the object amplitude of the ideal beam, and
region S is a round region of which the radius is the same
as the ideal beam. Choosing ∆U as the optimizing ob-
ject implies that the expression in the integral of Eq. (3)
should be real. This can be justified by the fact that the
near-field complex amplitude U is two-fold symmetric,

so the Fourier transform of U is real.
The optimization is carried out by setting the partial

derivatives of ∆U with respect to Al to zeros. For the
lth group, the optimizing condition is

L∑

k


Ak

∫∫

S

UFl · UFkdS


 = UC

∫∫

S

UFldS, (4)

where Ak is self variable. Equation (4) is essentially a
group of L linear equations. The integrals in Eq. (4)
are determined by the given configuration of the light
source, so we can calculate the integrals in advance to
obtain the coefficients of Ak. By solving Eq. (4), we
obtain all the group amplitudes with which the least
flatness is achieved over region S. This optimization
can also be considered as the process of non-orthogonal
decomposition in the least-squares sense over region S,
in which the basis is limited to the given functions.

An appropriate optimizing region S is also important
to obtain a good beam profile in a fixed configuration.
To find the region S which can bring the least flatness
and the highest efficiency, a feasible approach is to check
∆U with a varying radius of region S. Since we optimize
the beam profile by simulating an Airy function, the
corresponding far-field parameters of the Airy function
can be a reference. We usually choose the radius of S
around fλ/(πw0), where f is the far-field distance, λ is
the wavelength, and w0 is the waist radius of the center
unit laser.

For convenience, we assume a combining setup using a
positive lens in the simulation. The lens is placed closely
in front of the x0 − y0 plane, thus the focal plane of the
lens is the far-field plane x − y. The focal length f of
the lens is 1 m and the wavelength λ is 1060 nm. The
waist radii of the unit lasers are 1 mm, which is typical
for fiber lasers with collimated outputs. The far-field in-
tensity distribution is calculated by using the Fraunhofer
diffraction formula.

To start with, we consider a simplest case: a system
consisting of 7 unit lasers which is shown as black in Fig.
1. We assume that the lasers are closely packed together
with a distance D = 2 mm. The optimized far-field
intensity distribution is shown in Fig. 2. The optimized
group amplitudes for Fig. 2 are A0:A1 = 1 : (−0.040)
and the radius of the optimizing region S is 0.14 mm.
The corresponding flatness is about 2% in the optimizing
region. The result in Fig. 2 is not very satisfying where
only the center part of the beam is flattened. This is
because the diameter of the main peak of an Airy func-
tion is nearly twice as wide as the width of a side ring,
identical unit lasers cannot reproduce the Airy function
with high accuracy.

To produce a beam with a better profile, a simple
approach is to adjust the radius of the center laser ac-
cording to that of an Airy function. In our simulation,
we consider doubling the radius of the center laser. The
packing distance varies to D = 3 mm to accommodate
the size change of the center laser. We also add six more
unit lasers to form a third group, which is shown as
gray in Fig. 1. The optimizing result of the improved
configuration is shown in Fig. 3. The optimized group
amplitudes for Fig. 3 are A0:A1:A2 = 1 : (−0.306) :



January 10, 2010 / Vol. 8, No. 1 / CHINESE OPTICS LETTERS 47

Fig. 2. (a) Optimized far-field intensity distribution of a sys-
tem consisting of 7 unit lasers; (b) corresponding profiles
along x and y directions.

Fig. 3. (a) Optimized far-field intensity distribution of a sys-
tem consisting of 13 unit lasers; (b) corresponding profiles
along x and y directions.

0.012. The main lobe contains over 95% of the total
power, and the flatness is less than 1% within an op-
timizing region of a radius of 0.11 mm. All the side lobes
are not obvious compared with the main lobe. This may
lead to the idea of further improving the beam profile by
adding more unit lasers, while in fact the improvement
is not obvious due to the oscillating decrease of the Airy
function. As a result, Fig. 3 should be good for a flat-top
beam CBC with 13 unit lasers.

In conclusion, we have discussed the possibility of pro-
ducing a flat-top beam using CBC of Gaussian lasers. A
mathematical model and the corresponding optimization
algorithm are established for hexagonally arranged unit
lasers. Simulation results show that with 13 optimized
Gaussian lasers, a beam with the flatness of less than 1%
can be achieved. The main lobe contains over 95% of the
total power. The same concept can be used to generate
the beams of other profiles, such as a hollow beam[15].
MOPA structures with appropriate phase control can be
good implementations of the CBC flat-top beam gener-
ation scheme[4,16]. The scheme requires no shaping ele-
ment and is suitable for high-power applications.
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